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H E A T I N G  K I N E T I C S  O F  A P L A N E - P A R A L L E L  
L I G H T - S C A T T E R I N G  L A Y E R  

l~. I. Vitkin and A. P. Ivanov UDC 536.33 

A layer heated from both sides by plates as a result of radiative energy transport and a heat-conduction 
mechanism is considered. A system of differential equations describing radiation transport and heat transfer 
in the layer is formulated. Its solution is given on the basis of a fixed finite-difference approximation of the 
spatial derivatives that reduces the problem to a system of ordinary differential equations in time for the 
temperature and the radiation fluence in the process of heating of both the entire layer and separate portions 
o/it. 

The overwhelming majority of artificial and natural objects are more or less light-scattering. Therefore, 
thermal processes should be investigated with regard for this feature. Depite a number of publications devoted to 

this problem, only a few satisfactory results allowing one to obtain solutions by comparatively simple technical 

means have been obtained. Only the development of computer technology has made it possible in recent years to 

provide rapid quantitative solution of complicated technical problems. Earlier [I ], based on differential equations 
of heat conduction and radiation transport, we analyzed the onset time of the stationary regime in heating of a 
plane-parallel light-scattering layer as a function of the initial temperatures of the plates, the grids, and the layer, 

the number of grids, and the optical and heat-conductivity parameters of the light-scattering medium. In what 
follows, we will analyze the heating kinetics of both the entire layer and separate portions of it. 

Let us consider the formulation of the problem. Let there be a horizontally oriented plane-parallel layer 

bounded on both sides by heated plates. Within the layer, horizontal grids heated to a certain temperature are 

situated to provide more homogeneous or, conversely, inhomogeneous heating of the layer over its thickness. The 
thermal repine in the medium is created as a result of both absorption of radiation from the plates and the grids 

and a heat-conduction process. 

Let us define the properties of the medium, the plates, and the grids. From the viewpoint of radiation 

transport in the layer, it is characterized by the thickness x0, absorption coefficient k, scattering coefficient s, and 
scattering indicatrix X(~') of an e l ementa ry  volume of the medium. The parameters  k, s, a n d  %(~,) a re  

phenomenological. They provide information on the properties of the components comprising an elementary volume 
of the medium. Methods of calculation or measurement of the above parameters can be found in [2-4 ]. Since we 

consider a heat-conduct ing medium, it is also characterized by the e lementary-volume-averaged thermal 

conductivity ~7, specific heat c, and density p. The plates have the temperature Tp, coefficients of reflection rp and 
transmission rp, and coefficient of heat exchange with the medium hp. L grids are arbitrarily distributed over the 

layer thickness. They have the temperature Tg, coefficients of reflection rg and transmission rg, and coefficient of 
heat exchange hg. Heat is transferred into the layer as a result of both absorption of radiation from the heated 
plates and grids and a heat-conduction mechanism. 

Analysis of the t ime-dependent temperature fields is reduced to numerical solution of a system of 
differential equations of the radiation transport and heat conduction. By using a fixed spatial finite-difference 

approximation, the partial differential equations are reduced to a system of ordinary differential equations in time 

for the temperature and the radiation fluences at selected points of the layer considered [5 ]. Presently, the problem 
can be solved on a personal computer in the most general formulation, in which each plate and grid have different 
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properties, parameters of the heat conduction depend on the time, temperature, and coordinate x, and the optical 
parameters are also wavelength-dependent. However, a solution of this type will be of doubtful value, since the 

final results will not allow a simple analysis. The above-formulated problem was solved under the following 
simplifying assumptions. The temperature of the plates is the same and does not change with time. No grids are 
present in the layer. Initially, the layer has the same temperature at all points. The optical and thermophysical 

parameters of the medium are the same at all points and are temperature-independent. The layer and the plates 
are considered to be black bodies. 

We will now formulate the original differential equations and the boundary and initial conditions. Radiation 

transport in the opaque medium is described by a transport equation. Since in the given problem integral rather 
than angle-dependent parameters of the radiation are required for analysis of heating of the medium, we use the 

two-flow approximation of transport theory, which provides a good description of the distribution of irradiance 

within a plane-parallel layer [6-8 ]. If the radiation field in the medium is considered to be diffuse, then, according 
to [7], the following differential equations can be written for the spectrum-integrated downward and upward 
radiation fluences El and E2 within the horizontal plane-parallel layer considered with regard for the thermal 
radiation of the medium: 

dEl ~ dE2 _ 
kdx--- 2 ( o T  4 - e l ) ' t "  - ( e  2 -  e l ) ,  ~ - - -  - 2(o'T 4 E2) 

2A o 
1 - ^ - E2). (I) 

Here o = 5.67-10 -a  W/(m2.deg 4) is the Stefan-Boltzmaun constant, A = s/(k + s) is the survival probability of 

a q u a n t u m ,  Io - (3 - x l ) / 8  is the fraction of the radiation backscattered by an elementary volume upon its 
irradiation from one side by diffuse radiation, and xl is the first coefficient in the expansion of the indicatrix X(~') 

in Legendre polynomials. 

The heat-conduction equation is as follows: 

8T_ k (E l + E 2 _ 2 a T  4 ) +  7/ 82T (2) 
8t cp cp 8x 2" 

The boundary conditions for the temperature of the medium at the plates are as follows: 

O T  + , -  = -- hp ( T  + ' -  - T p ) ,  (3 )  
P 

where the plus and minus signs correspond to the temperature in the medium under the upper and above the lower 
plate. The boundary conditions for the radiation fluences at the upper and lower plates are as follows: 

E~ [pl = (1 - rpl - Tpl ) o:/'p41 -I- rplE~ (4) 

and 

E2 Ip2 = (1 - rp2 - rp2) ~ + rp2E-(. (5) 

The initial condition is the constant temperature TO throughout the entire medium at the initial instant of time t ffi 

0, i.e., 

T (0, x) = r 0 . (6) 

Numerical  solution of system (1)-(6) makes it possible to analyze the process of t ime-dependent  
transformation of the radiation and temperature fields. The entire space is divided into N zones with the boundaries 
of the layer lying at grid nodes. Spatial derivatives are replaced by their finite-difference approximations [9 ]. Here 

the heat-conduction equation is reduced to a system of N ordinary differential equations, and the system describing 
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the radiation transport transforms into a system of 2N linear equations. They can be solved by standard procedures. 

The accuracy of the solution with respect to the coordinate was evaluated for certain variants by doubling the 
number of nodes. The algorithm described can easily be implemented and does not have high requirements with 
respect to computational resources. For N of the order of I00, a personal computer is quite suitable for the numerical 

computations. 

We now dwell on results of computations. The process of the temperature variation depends on 7 -  t / co ,  

an d  the temperature of the medium can be conveniently normalized by the plate temperature, i.e., it is convenient 

to consider the relative temperature T m -  T / T p .  The relationship between the average relative temperature of the 

xo 
layer Tm" (1/.go)f "T(x)dx and ' / (wi th  the dimensionality W - I .  m-3 .  K) is presented in Fig. 1 on a semilogarithmic 

o 

scale. It should be noted that the quantity co is of the order of 106 J ' m - 3 " K  - l  for a wide range of media. 

Therefore, transformation to real time can be carried out by multiplying "/by 106. Here and in what follows the 

coefficients of reflection and transmission of the plates equal zero, Tp - 1000 K, and To - 300 K. We consider a 

disperse layer having the following optical and geometric parameters: A - 0.8, ~o - 0.05, xo - 1 m, and the absorptive 

optical thickness kxo - 10. The thermal conductivity had three different values. We refer to media with r / -  11.42, 

I. 142, and 0.1142 W. m-1 .  K-1 as a conductor, semiconductor, and dielectric, respectively. It should be noted that 

at high values of t/, the heating process depends strongly on the heat-transfer coefficient of the p la te -medium 

system, whereas at low r/its value virtually does not affect the average temperature. In the conductor, when hp is 

large, ideal conditions for feeding the material with thermal energy are provided as a result of efficient heat transfer 
from the plate to the medium and its subsequent rapid redistribution over the entire layer thickness. A rapid heating 

process takes place. If hp = 0, heating takes place only as a result of radiative energy transport. In this case the 

temperature of the layer increases more slowly. In the dielectric, a change in hp/r / f rom zero to l0 s m -1 leads to 

the fact that only the near-surface portion of the medium immediately acquires the plate temperature, which cannot 

affect strongly the rate of heat propagation into the layer in the case of low thermal conductivity. 
We will now consider heating of different portions of the layer characterized by the coordinate s -- x / x o .  

Since the two plates have identical properties, the problem is symmetric with respect to the middle of the layer E 

ffi 0.5, and therefore it is sufficient to analyze the temperature kinetics only at points E -< 0.5. Dependences of 

on ' / fo r  four different distances from the plate are presented in Fig. 2 for the dielectric and the conductor. In the 
same figure, for comparison we present the functions Tm(D (curves 5). In the dielectric (Fig. 2a), the value of the 

heat-transfer coefficient does not affect the heating process at virtually all depths. The reason for this was pointed 
out in describing Fig. 1. Only the layer boundary immediately acquires the temperature of the plate when hp/r  1 ffi 

10 s m- I ,  whereas when no heat transfer takes place, the heating process slows down. Although the heating kinetics 
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Fig. 2. Tm as a function of ' /at  different depths in the layer for a dielectric (a) 
and a conductor (b) (hp/T/ - 105 m - l  (solid curves), hp/ff = 0 (dashed 

curves)): 1) x=O,  2) 0.125, 3) 0.25, 4) 0.5; 5) layer-averaged temperature Tin. 

differs at different depths, and deep-lying layers are, quite naturally, heated more slowly than surface ones, the 
stationary regime begins everywhere at virtually one and the same time. The temperature change in the conductor 
has a somewhat different character (Fig. 2b). The effect of the quantity hp manifests itself in heating of different 
portions of the layer. Near-surface layers are heated more slowly at first than in the dielectric, since, due to the 
high thermal conductivity, they transfer heat into the depth. Therefore, deep-lying layers are heated faster. The 
heat-conduction mechanism leads to more homogeneous and faster heating of the entire layer. However, the scatter 
in the instants of time of practical onset of the stationary r e ,  me at different depths is larger for the conductor than 
for the dielectric. It should be noted that the character of the change in the average temperature (in both the 
dielectric and the conductor) is basically different than that at any depth. In the present work we considered 
extreme cases of the thermal conductivity of the medium. An analysis of intermediate situations would greatly 
expand the size of the article. However, it is evident that the character of the corresponding regularities will be 
intermediate between those considered in the present work. 

N O T A T I O N  

x, current coordinate; ~, normalized layer thickness; xl, first coefficient of the expansion of the scattering 
indicatrix in Legendre polynomials; r, reflection coefficient; T, temperature; T, normalized temperature; h, heat- 

exchange coefficient of a plate; El and E2, irradiances from above and from below, respectively; "/, normalized time. 
Subscripts: p, plate; g, grid; m, layer-averaged. 

R E F E R E N C E S  

1. l~. I. Vitkin and A. P. Ivanov, Teplofiz. Vys. Temp., 36, No. 4 (1998). 
2. A.P. Ivanov, Optics of Scattering Media [in Russian ], Minsk (1969). 

3. A.P. Ivanov, S. M. Reprintseva, N. V. Fedorovich, and V. L. Dragun, Inzh.-Fiz. Zh., 22, No. 4,640-643 (1972). 
4. A.P. Ivanov, S. M. Reprintseva, and V. L. Dragun, Dokl. Akad. Nauk BSSR, 16, No. 12, 1094-1097 (1972). 
5. E.I.  Vitkin and A. I. Zolotovskii, I. P. Smyaglikov, and V. D. Shimanovich, Inzh.-Fiz. Zh., 68, No. 5, 19-26 

(1995). 
t 

6. E.P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer through a Scattering Medium [in Russian ], Minsk 
(1985). 
/ 

E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer through a Scattering Medium, Berlin (1991). 
E. P. Zege, Two-Flow Approximation in the Theory of Radiation Transport, Preprint of the Institute of Physics 
of the Academy of Sciences of the BSSR [in Russian ], Minsk (1971). 
D. Shih, Numerical Methods in Heat-Transfer Problems [Russian translation ], Moscow (1988). 

. 

8. 

. 

207 


